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Abstract

In this paper, the elastodynamic crack problem for a coating/substrate system with a functionally graded interfacial

zone is investigated under the condition of antiplane shear impact. With the interfacial zone being modeled by a

nonhomogeneous interlayer having the power-law variations of shear modulus and mass density, the coating is assumed

to contain an embedded or an edge crack perpendicular to the boundaries. Laplace and Fourier integral transforms are

used to reduce the transient problem to solving a singular integral equation with a generalized Cauchy kernel in the

Laplace transform domain. The time dependence of the crack-tip response in the physical domain is recovered via the

numerical inversion of the Laplace transforms and the values of dynamic mode III stress intensity factors are provided

as a function of time. As a result, the effects of material and geometric parameters of the current coating/substrate

system on the dynamic load transfer and overshoot characteristics over the corresponding elastostatic solutions are

addressed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of functionally graded materials in a wide range of modern engineering practice has been rapidly
increasing over the past decade, taking advantage of their attractive traits of relatively smooth spatial

variations of physical properties (Suresh and Mortensen, 1998). The deliberate use of graded media, among

other applications, in the form of an interlayer as a distinctive transition phase between the incompatible

dissimilar constituents can aid in soothing out the property mismatch that is apparent across the materials

juncture. It is thus feasible to achieve the enhanced reliability and durability over the conventional,
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discretely layered or coated system (Miyamoto et al., 1999). At the same time, many challenging issues have

arisen in connection with the fatigue and fracture behavior of functionally graded materials, which have

prompted extensive research demands for finding the solutions to some related crack problems under

various loading conditions. A review of previous investigations, along with a number of salient features
encountered in the analysis of such crack problems entailing the graded, nonhomogeneous properties, can

be found in the article by Erdogan (1998).

When it comes to the situations where the external loading is dynamic in nature, a subject area of

substantial importance would be to study the impact response of the graded media containing crack-like

flaws. In this regard, Babaei and Lukasiewicz (1998) evaluated the dynamic stress intensity factors for an

antiplane shear crack in a graded material between the dissimilar half-planes, and Li et al. (2001) and Li

and Weng (2002) examined the torsional impact behavior of a cylindrical crack and a penny-shaped crack,

respectively, in the graded interlayer. More recently, the impact failure of a mode III crack located parallel
to the boundaries of a graded orthotropic strip was predicted by Feng et al. (2003) based on the energy

density criterion, whereas the dynamic response of a mode I crack perpendicular to the free surfaces of a

nonhomogeneous orthotropic strip was considered by Chen et al. (2002). Another example of transient

fracture analysis is that of a mode III crack in an unbounded functionally graded material using the

boundary integral equation method performed by Zhang et al. (2003), where the variations of elastic

properties were described by both the unidirectional and bidirectional exponential laws. Instead of taking

the material parameters of the graded constituents to be certain continuous functions, i.e., exponential or

power functions of space as in the aforementioned, Wang et al. (2000) proposed a multilayered composite
model to provide the elastodynamic solutions for some cracked specimens possessing the graded, nonho-

mogeneous properties. To be specific, the graded region was simulated as the sum of several sublayers with

slightly different homogeneous properties in each sublayer. This approach was employed independently by

Itou (2001) for the dynamic analysis of a mixed mode crack in a nonhomogeneous interfacial layer between

two dissimilar half-planes. Similarly, but in contrast to having piecewise constant elastic properties, Wang

and Gross (2000) assigned the shear modulus that varies linearly in each sublayer and is continuous on the

subinterfaces, with application to a dynamic mode III crack in a graded interfacial layer of bonded

materials.
The objective of this paper is to investigate the impact response of an embedded or an edge crack in a

coating/substrate system with a graded interfacial zone subjected to the antiplane shear loading condition.

The interfacial zone in-between is modeled by a nonhomogeneous interlayer with the spatially varying

shear modulus and mass density in terms of power functions. The method of analysis is based on the use of

Laplace and Fourier integral transforms, coupled with the solution of a resulting singular integral equation

with a generalized Cauchy kernel in the Laplace transform domain. The particular emphasis is placed on

determining the mode III stress intensity factors, which are first defined and estimated in the Laplace

transform domain. Subsequently, the crack-tip response in the physical domain is recovered by the
numerical Laplace inversion, leading to the evaluation of dynamic mode III stress intensity factors as a

function of time for various combinations of material and geometric parameters of the problem under

consideration. Further attention is also paid to the dynamic overshoot characteristics over the corre-

sponding elastostatic solutions.
2. Problem description and basic equations

Consider a coating/substrate system with a graded interfacial zone as shown in Fig. 1, where the coating

on the left-hand side contains a crack of length 2c ¼ b� a perpendicular to the boundaries. By modeling

the interfacial zone in-between as a nonhomogeneous interlayer, the quantities associated with the cracked
coating, the interlayer, and the substrate are defined in the local coordinates ðx; yÞ ¼ ðxj; yÞ, j ¼ 1; 2; 3, with



Fig. 1. Configuration of a cracked coating/substrate system with a functionally graded interfacial zone.
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the thicknesses being hj, j ¼ 1; 2; 3, respectively. It is assumed that the coated system, which is initially at

rest and stress-free, is suddenly exposed to an antiplane shear traction applied on the crack surface. With

shear moduli and mass densities of the homogeneous constituents given by lj and qj, j ¼ 1; 3, respectively,
those of the nonhomogeneous interlayer are expressed as (Chiu and Erdogan, 1999)
l2ðxÞ ¼ l1ð1þ axÞb; q2ðxÞ ¼ q1ð1þ axÞb�2
; ð1Þ
where the constant a and the exponent b are determined in the local coordinates ðx; yÞ ¼ ðx2; yÞ so as to

render the continuous transition of such properties at the locations of nominal interfaces such that
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l3=l1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
q3=q1

p
h2

ffiffiffiffiffiffiffiffiffiffiffiffi
q3=q1

p ; b ¼ 2 lnðl3=l1Þ
lnðl3=l1Þ � lnðq3=q1Þ

: ð2Þ
With wjðx; y; tÞ, j ¼ 1; 2; 3, denoting the z-component of the displacement vector under antiplane shear

deformation, the corresponding stress components are given by
sjxz ¼ lj
owj

ox
; sjyz ¼ lj

owj

oy
; j ¼ 1; 2; 3 ð3Þ
and the equations of motion for the constituents of the 3-layer coating/substrate system are written as
r2wj ¼
qj

lj

o2wj

ot2
; j ¼ 1; 3; ð4Þ

r2w2 þ
ab

1þ ax
ow2

ox
¼ q1

l1ð1þ axÞ2
o2w2

ot2
; ð5Þ
where t is the time and r2 is the two-dimensional Laplacian operator in the variables x and y.
Because the geometric and material symmetry prevails with respect to x-axis, only the upper half of the

region, y > 0, is considered. Together with the initial conditions as follows:
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wjðxj; y; 0Þ ¼ 0;
owj

ot
ðxj; y; 0Þ ¼ 0; 0 < xj < hj; j ¼ 1; 2; 3: ð6Þ
the conditions of traction-free boundaries and perfect bonding along the nominal interfaces in the coated

system are imposed in the local coordinates as
s1xzð0; y; tÞ ¼ 0; s3xzðh3; y; tÞ ¼ 0; ð7Þ
w1ðh1; y; tÞ ¼ w2ð0; y; tÞ; w2ðh2; y; tÞ ¼ w3ð0; y; tÞ; ð8Þ
s1xzðh1; y; tÞ ¼ s2xzð0; y; tÞ; s2xzðh2; y; tÞ ¼ s3xzð0; y; tÞ ð9Þ
and the mixed conditions on the plane of the crack, y ¼ 0, are prescribed as
wjðxj; 0; tÞ ¼ 0; 0 < xj < hj; j ¼ 2; 3; ð10Þ
w1ðx1; 0; tÞ ¼ 0; 0 < x1 < a; b < x1 < h1; ð11Þ
s1yzðx1; 0; tÞ ¼ f ðx1ÞHðtÞ; a < x1 < b; ð12Þ
where f ðx1Þ is the arbitrary crack surface traction and HðtÞ refers to the Heaviside unit step function.

A pair of Laplace transform and its inverse over the time variable t is defined as (Churchill, 1981)
w�
j ðxj; y; pÞ ¼

Z 1

0

wjðxj; y; tÞe�pt dt; wjðxj; y; tÞ ¼
1

2pi

Z
Br
w�

j ðxj; y; pÞept dp; ð13Þ
where p is the Laplace transform variable, Br stands for the Bromwich path of integration, and i ¼ ð�1Þ1=2.
Upon applying the Laplace transform, the time dependence is eliminated from the equations of motion

so that the general solutions for the displacement components, w�
j ðx; y; pÞ, j ¼ 1; 2; 3, can be obtained in

terms of the Fourier integrals in the local coordinates ðx; yÞ ¼ ðxj; yÞ, j ¼ 1; 2; 3, as
w�
1ðx; y; pÞ ¼

2

p

Z 1

0

ðA1e
k1x þ A2e

�k1xÞ sin sy dsþ 1

2p

Z 1

�1
e�k1y�isx ds; 0 < x < h1; ð14Þ
w�
2ðx; y; pÞ ¼

2

p
ð1þ axÞð1�bÞ=2

Z 1

0

B1Iv
s
jaj ð1

�
þ axÞ

�
þ B2Kv

s
jaj ð1

�
þ axÞ

�
sin sy ds; 0 < x < h2;

ð15Þ
w�
3ðx; y; pÞ ¼

2

p

Z 1

0

ðC1e
k3x þ C2e

�k3xÞ sin sy ds; 0 < x < h3; ð16Þ
where s is the Fourier transform variable, Ajðs; pÞ, j ¼ 1; 2; 3, Bjðs; pÞ, Cjðs; pÞ, j ¼ 1; 2, are arbitrary un-

known functions to be determined, and Ivð Þ and Kvð Þ are the modified Bessel functions of the first and

second kind, respectively, with kjðs; pÞ, j ¼ 1; 3, and vðpÞ written as
kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ

qj

lj
p2

s
; j ¼ 1; 3; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b
2

� �2

þ q1

l1

p
a

� �2

s
ð17Þ
and the expressions for the corresponding stress components are obtainable in the Laplace transform

domain from the constitutive relations in Eq. (3).
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3. Derivation of the integral equation

In order to derive the integral equation for the crack problem, a new unknown function is introduced in

the Laplace transform domain to replace the mixed conditions in Eqs. (11) and (12), i.e.,
/�ðx1; pÞ ¼
o

ox1
w�

1ðx1; 0; pÞ; a < x1 < b;

0; 0 < x1 < a; b < x1 < h1

8<
: ð18Þ
and the boundary and interface conditions in Eqs. (7)–(9) and (12) to be met in the Laplace transform

domain are rewritten as
s�1xzð0; y; pÞ ¼ 0; s�3xzðh3; y; pÞ ¼ 0; ð19Þ

w�
1ðh1; y; pÞ ¼ w�

2ð0; y; pÞ; w�
2ðh2; y; pÞ ¼ w�

3ð0; y; pÞ; ð20Þ

s�1xzðh1; y; pÞ ¼ s�2xzð0; y; pÞ; s�2xzðh2; y; pÞ ¼ s�3xzð0; y; pÞ; ð21Þ

s�1yzðx1; 0; pÞ ¼
f ðx1Þ
p

; a < x1 < b: ð22Þ
It is then observed from Eqs. (14) and (18) that the expression for the unknown A3ðs; pÞ is obtained as
A3ðs; pÞ ¼
i

s

Z b

a
/�ðr; pÞeisr dr ð23Þ
and those for the six other unknowns, Ajðs; pÞ, Bjðs; pÞ, and Cjðs; pÞ, j ¼ 1; 2, can be also determined in

terms of /� by the applications of Eqs. (19)–(21). Hence, the auxiliary function /� becomes the only un-

known to be evaluated in such a way that the crack surface condition in Eq. (22) is satisfied.

Subsequently, from Eqs. (3) and (14) and using the required expressions for Ajðs; pÞ, j ¼ 1; 2; 3, followed
by some algebraic manipulations, the traction component, s�1yz, along the crack plane can be written in the

form as
p
l1

lim
y!þ0

s�1yzðx; y; pÞ ¼
Z b

a
½K1ðx; r; pÞ þ K2ðx; r; pÞ�/�ðr; pÞdr; x > 0; ð24Þ
where Kjðx; r; pÞ, j ¼ 1; 2, are the kernels such that
K1ðx; r; pÞ ¼ � i

2

Z 1

�1
Rðs; pÞeisðr�xÞ ds; ð25Þ

K2ðx; r; pÞ ¼
Z 1

0

Qðx; r; s; pÞds; ð26Þ
with the integrands Rðs; pÞ and Qðx; r; s; pÞ being given by
Rðs; pÞ ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ q1

l1

p2
r

; ð27Þ

Qðx; r; s; pÞ ¼ s2

k21
½e�k1ðxþrÞ þ 4e�k1h1D0ðs; pÞ cosh k1x sinh k1r� ð28Þ
in which the expression for the function D0ðs; pÞ can be found in Appendix A.
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Upon identifying the asymptotic properties of the integrands for large values of the variable s
lim
jsj!1

Rðs; pÞ ¼ R1ðsÞ ¼
jsj
s
; ð29Þ
lim
s!1

Qðx; r; s; pÞ ¼ Q1ðx; r; sÞ ¼ e�sðxþrÞ: ð30Þ
It is therefrom obvious that the singularities the kernels may have must be the consequence of the foregoing

limiting behavior as s tends to infinity.

As a result, after separating the singular parts from the kernels and applying the crack surface condition

in Eq. (22), an integral equation is derived that is valid for both the embedded (a > 0) and the edge crack
(a ¼ 0) such that
Z b

a

1

r � x

�
þ 1

r þ x
þ Gðx; r; pÞ

�
/�ðr; pÞdr ¼ p

l1

f ðxÞ
p

; a < x < b; ð31Þ
where the kernel Gðx; r; pÞ is written as
Gðx; r; pÞ ¼
Z 1

0

½Rðs; pÞ � R1ðsÞ� sin sðr � xÞdsþ
Z 1

0

½Qðx; r; s; pÞ � Q1ðx; r; sÞ�ds: ð32Þ
It should be mentioned that when the crack is embedded as a > 0, the term 1=ðr � xÞ in Eq. (31) is known

as a Cauchy singular kernel that leads to the standard square-root singularity for the unknown function /�

and the other two terms inside the bracket of Eq. (31) remain bounded in the closed interval ½a; b�, without
affecting the singular behavior of crack-tip stresses. For the case of an edge crack problem as a ¼ 0, besides

the Cauchy kernel that is singular at x ¼ r, the term 1=ðr þ xÞ becomes also unbounded when x and r
approach the zero end point simultaneously, while the function Gðx; r; pÞ is a regular kernel. In this case, the

first two terms in the kernels of the integral equation constitute a generalized Cauchy singular kernel.
4. Solution of the integral equation

The dominant singular kernel in the integral equation is the Cauchy-type for both cases of the embedded

and the edge crack. This also holds true even for the crack that terminates at the nominal interface with the

graded interlayer, i.e., b ¼ h1, where the continuity of shear moduli exists (Erdogan, 1998). The auxiliary

function /� for these two crack configurations can therefore be expressed as (Muskhelishvili, 1953)
/�ðr; pÞ ¼

gðr; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞðb� rÞ

p ; a < r < b;

gðr; pÞffiffiffiffiffiffiffiffiffiffiffi
b� r

p ; 0 < r < b;

8>><
>>: ð33Þ
where gðr; pÞ is an unknown function bounded and nonzero at the end points.

After normalizing the interval from ða; bÞ to ð�1; 1Þ such that
r
x

� 	
¼ b� a

2

g
n

� 	
þ bþ a

2
; �1 < ðn; gÞ < 1; ð34Þ
the solution to the integral equation can be expanded into the following series:
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/�ðg; pÞ ¼

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p X1
n¼0

cnTnðgÞ; jgj < 1; a > 0

1

p
ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
X1
n¼0

cnTnðgÞ; jgj < 1; a ¼ 0

8>>><
>>>:

ð35Þ
where Tn is the Chebyshev polynomial of the first kind and cn, nP 0, are coefficients to be determined. It is

to be pointed out that for the embedded crack, the function /� must fulfill the single-valuedness as
Z 1

�1

/�ðg; pÞdg ¼ 0 ð36Þ
and from the first of Eq. (35) and Eq. (36) and the orthogonality of Tn, it can be seen that c0 ¼ 0. In the edge

crack problem, however, the solution to the integral equation no longer contains an arbitrary constant so
that the compatibility condition as above is not needed in ensuring a unique solution.

Upon substituting Eqs. (34) and (35) into Eq. (31), truncating the series with a finite number of terms,

and using the properties of the Chebyshev polynomials (Gradshteyn and Ryzhik, 1980)
Z 1

�1

TnðgÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
ðg� nÞ

dg ¼ pUn�1ðnÞ; jnj < 1; nP 1; ð37Þ

Z 1

�1

TnðgÞffiffiffiffiffiffiffiffiffiffiffi
1� g

p
ðg� nÞ

dg ¼
Z 1

�1

TnðgÞ � TnðnÞffiffiffiffiffiffiffiffiffiffiffi
1� g

p
ðg� nÞ

dgþ TnðnÞffiffiffiffiffiffiffiffiffiffiffi
1� n

p ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� n

p
=2












; jnj < 1; nP 0;

ð38Þ

where Un is the Chebyshev polynomial of the second kind, the integral equation can be regularized. The

ensuing functional equation can be recast into a system of linear algebraic equations for the unknown

coefficients cn. To this end, the roots of the Chebyshev polynomial of the first kind are employed as a set of

collocation points (Erdogan, 1998), together with the involved bounded integrals evaluated by using the

appropriate Gaussian quadrature rules (Davis and Rabinowitz, 1984).

Once the coefficients cn are determined, the integral equation in Eq. (31) provides the values of singular

traction ahead of the crack tip. It may be worth reminding that when the elastic properties are continuous

and piecewise differentiable near and at the crack tip, the corresponding stress field retains the square-root
singularity and the structure which are the same as those in the homogeneous material (Eischen, 1987; Jin

and Noda, 1994). As a result, the elevation of local crack-tip stresses can be extracted by first defining and

evaluating the stress intensity factors in the Laplace transform domain as
K�
IIIaðpÞ ¼ lim

x!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� xÞ

p
s�1yzðx; 0; pÞ ¼

l1

p

ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r XN
n¼1

ð�1Þncn; a > 0;

0; a ¼ 0;

8<
: ð39Þ

K�
IIIbðpÞ ¼ lim

x!bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� bÞ

p
s�1yzðx; 0; pÞ ¼

� l1

p

ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r XN
n¼1

cn; a > 0;

� l1

p

ffiffiffi
b

p XN
n¼0

cn; a ¼ 0;

8>>>><
>>>>:

ð40Þ
which is then followed by the numerical Laplace inversion to recover the time dependence of the stress

intensifications, based on the algorithm developed by Stehfest (1970) such that
KIIIaðtÞ ffi
ln 2

t

XM
m¼1

VmK�
IIIa

m
t
ln 2

� �
; t > 0; ð41Þ
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KIIIbðtÞ ffi
ln 2

t

XM
m¼1

VmK�
IIIb

m
t
ln 2

� �
; t > 0; ð42Þ
where KIIIaðtÞ and KIIIbðtÞ are the dynamic mode III stress intensity factors at a specific time t for the crack
tips a and b, respectively, M is a positive even number, and Vm is given by
Vm ¼ ð�1ÞmþM=2
Xminðm;M=2Þ

k¼ð1þmÞ=2

kM=2ð2kÞ!
ðM=2� kÞ!k!ðk � 1Þ!ðm� kÞ!ð2k � mÞ! : ð43Þ
At large times, the values of such transient stress intensity factors would converge to those of the

elastostatic solutions
lim
t!1

½KIIIaðtÞ;KIIIbðtÞ� ffi ½ðKIIIaÞstatic; ðKIIIbÞstatic� ð44Þ
and these static limits can be obtained from the final-value theorem as (Churchill, 1981)
½ðKIIIaÞstatic; ðKIIIbÞstatic� ¼ lim
p!0þ

p½K�
IIIaðpÞ;K�

IIIbðpÞ�: ð45Þ
To be mentioned is that due to the continuity of shear moduli and mass densities through the graded

interlayer, the defined stress intensity factors are equally applicable even when the crack-tip intersects the

nominal interface with the interlayer such that b ¼ h1.
5. Results and discussion

The integral equation in Eq. (31) is solved under the condition of uniform antiplane shear impact applied

on the crack surface as f ðx1Þ ¼ �s0 in Eq. (12), with 30-term expansion of the auxiliary function in Eq. (35)

and 10-term expansion for the inversion of the Laplace transforms in Eqs. (41) and (42). This numerical

scheme leads to the solutions with a sufficient degree of accuracy for the material and geometric config-

urations considered in the present study. The resulting values of the normalized dynamic stress intensity
factors, KIIIðtÞ=s0l1=2, are plotted in Figs. 2–6 as a function of dimensionless time t� ¼ cst=l for various
Normalized dynamic stress intensity factors KIIIðtÞ=K0 versus dimensionless time cst=l for a homogeneous strip with a center or

e crack (K0 ¼ s0c1=2 and l ¼ c for the center crack; K0 ¼ s0b1=2 and l ¼ 2c ¼ b for the edge crack).



Fig. 3. Normalized dynamic stress intensity factors KIIIðtÞ=K0 of an edge crack as a function of dimensionless time cst=b for different

values of l3=l1 and h3=h1 (K0 ¼ s0b1=2, h2=h1 ¼ 0:5, b=h1 ¼ 1:0, q3=q1 ¼ 1:0).
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combinations of material ðl3=l1; q3=q1Þ. and geometric parameters ðh2=h1; h3=h1; 2c=h1Þ of the problem,
where l ¼ c for the internal crack, l ¼ 2c ¼ b for the edge crack, and cs ¼ ðl1=q1Þ

1=2
is the shear wave

velocity in the coating.

In order to discuss the results, it may be now appropriate to recall some general qualitative arguments

from the elastodynamic crack problem. Namely, the impact-induced dynamic stress intensity factors rise

rapidly with time, reach the peaks, and then decrease in magnitude, eventually settling down to the static

limits for sufficiently large times. Such a generic feature can be attributed to the interactions between the

waves scattered from the crack and those reflected from the boundaries and/or interfaces in the composite

media (Sih and Chen, 1981). Further addressed in this section are the dynamic overshoot characteristics of
the transient crack-tip behavior as quantified in Tables 1–5 by extracting the ratios between the peaks and

the corresponding elastostatic solutions, ðKIIIÞpeak=ðKIIIÞstatic.
The dynamic stress intensity factors for a homogeneous strip containing a center or an edge crack are

first illustrated in Fig. 2 for different values of 2c=h, where h ¼ h1 þ h2 þ h3 is the strip width, together with

solid circles being added to represent the exact elastostatic solutions KIIIð1Þ=K0 ¼ ½ðh=pcÞ tanðpc=hÞ�1=2
(Murakami, 1987). In this case, l3=l1 ¼ 1:0 and q3=q1 ¼ 1:001 are used to avoid the division by zero in Eq.

(2) and it should be remarked that the current results for the center crack are in good agreement with those

given by Chen (1977). It is apparent by comparison that the edge-cracked strip is subjected to the greater
peaks of the normalized dynamic stress intensities than the center-cracked one. Of interest is that when

2c=h < 0:5 for the embedded crack and 2c=h < 0:7 for the edge crack, the peaks remain nearly the same for

each crack problem. Table 1 provides the ratio of ðKIIIÞpeak=ðKIIIÞstatic that is seen to become enlarged when

2c=h decreases, implying the effect of inertia more dominant over the effect of finite geometry for the smaller

crack size. When 2c=h is increased, however, the peak values approach the static limits. Also obvious from

this table is the more pronounced dynamic overshoot for the edge crack. Based on the above and the

general notion that the problem of edge cracking is of greater practical importance than that of the

embedded crack, the results in the sequel are those for a ¼ 0, i.e., 2c ¼ b.
The evolution of the dynamic stress intensity factors with time is given in Fig. 3 for several combinations

of shear modulus ratio l3=l1 and relative substrate thickness h3=h1, with other properties being fixed as

h2=h1 ¼ 0:5, b=h1 ¼ 1:0 and q3=q1 ¼ 1:0. As expected, the peaks are greater for smaller l3=l1, but sup-

pressed below that of the homogeneous strip when l3=l1 > 1:0, owing to the constraint from the adjacent



Fig. 4. Normalized dynamic stress intensity factors KIIIðtÞ=K0 of an edge crack as a function of dimensionless time cst=b for different

values of h2=h1 (K0 ¼ s0b1=2, (a) l3=l1 ¼ 0:2, (b) l3=l1 ¼ 5:0, q3=q1 ¼ 1:0, b=h1 ¼ 1:0, h3=h1 ¼ 1).
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stiffer substrate. Another point to be noted is that the peak magnitude in the dynamic stress intensification

and the elapsed time interval before it occurs appear to be hardly affected by the substrate thickness h3=h1,
although the static solutions may be lowered as h3=h1 is increased. Table 2 shows that the effect of inertia as

measured by the ratio ðKIIIÞpeak=ðKIIIÞstatic is more notable for the substrate of greater stiffness and thickness,

and that the shear modulus ratio is more influential than the substrate thickness.
Figures 4a and b contain the plots of time variations of the dynamic stress intensity factors for different

values of interlayer thickness h2=h1, where it is prescribed that q3=q1 ¼ 1:0, b=h1 ¼ 1:0, and the substrate is

semi-infinite as h3=h1 ¼ 1. Specifically, as shown in Fig. 4a, when l3=l1 ¼ 0:2, the peak stress intensifi-

cation tends to be lowered as h2=h1 is increased. Such a trend with respect to h2=h1 is indicative of the fact
that the graded interlayer of greater thickness is more effective in alleviating the severity of edge cracking in

the stiffer coating layer. In Fig. 4b, the opposite response is observed for l3=l1 ¼ 5:0, where the amplitude

of the curve drops as the interlayer is rendered thinner. It is noted that the solutions for the given material

combinations are close to that for a homogeneous half-plane when h2=h1 > 2:0 so that the influence of the
interlayer becomes insignificant. The dynamic overshoot of the stress intensity factors in Table 3 depicts



Fig. 5. Normalized dynamic stress intensity factors KIIIðtÞ=K0 of an edge crack as a function of dimensionless time cst=b for different

values of b=h1 (K0 ¼ s0b1=2, (a) l3=l1 ¼ 0:2, (b) l3=l1 ¼ 5:0, q3=q1 ¼ 1:0, h2=h1 ¼ 0:5, h3=h1 ¼ 1).
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that for the coating stiffer than the substrate as l3=l1 ¼ 0:2, the more remarkable effect of inertia exists for

the greater h2=h1, whereas the opposite is true when l3=l1 ¼ 5:0.
With q3=q1 ¼ 1:0, h2=h1 ¼ 0:5, and h3=h1 ¼ 1, Figure 5a demonstrates that for the stiff coating as

l3=l1 ¼ 0:2 the peak value of the stress intensity factors becomes greater when the crack size b=h1 is in-

creased, while Figure 5b shows the reverse tendency for the case of compliant coating as l3=l1 ¼ 5:0.
Besides, it can be conjectured that for b=h1 < 0:5, the dynamic stress intensity factors are closely matched

with those of an edge-cracked homogeneous medium. In Table 4, the dynamic overshoot characteristics are

also described in terms of ðKIIIÞpeak=ðKIIIÞstatic, from which it is inferable that the inertia effect is more

appreciable for the smaller crack size when l3=l1 ¼ 0:2 and the opposite prevails when l3=l1 ¼ 5:0.
How the mass density ratio q3=q1 affects the dynamic crack-tip response is next examined for two dif-

ferent values of shear modulus ratio l3=l1, where it is assumed that h2=h1 ¼ 0:5, b=h1 ¼ 1:0, and

h3=h1 ¼ 1. Figure 6a predicts that when l3=l1 ¼ 0:2, the severity of near-tip region tends to be somewhat

attenuated as q3=q1 is increased. When l3=l1 ¼ 5:0, the reverse behavior is plotted in Fig. 6b such that the
constraint by the nearby stiffer substrate can be offset by increasing q3=q1. Moreover, the effect of q3=q1 on

the dynamic stress intensity factors is observed to be more discernible when the coating layer is stiffer than



Table 1

Ratios between the peak and elastostatic stress intensity factors, ðKIIIÞpeak=ðKIIIÞstatic, for a homogeneous strip containing a center or an

edge crack

2c=h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Center crack 1.216 1.201 1.176 1.135 1.080 1.032 1.000 1.000

Edge crack 1.697 1.676 1.639 1.585 1.513 1.413 1.277 1.121

Fig. 6. Normalized dynamic stress intensity factors KIIIðtÞ=K0 of an edge crack as a function of dimensionless time cst=b for different

values of q3=q1 (K0 ¼ s0b1=2, (a) l3=l1 ¼ 0:2, (b) l3=l1 ¼ 5:0, h2=h1 ¼ 0:5, b=h1 ¼ 1:0, h3=h1 ¼ 1).
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the substrate as in Fig. 6a. The overall effect of q3=q1, however, appears to be less appreciable when
compared with that of l3=l1 in Fig. 3. Because the static solutions are independent of the mass density,

Table 5 delineates that for l3=l1 ¼ 0:2, the inertia effect becomes more noticeable when q3=q1 is lowered.



Table 2

Ratios between the peak and elastostatic stress intensity factors, ðKIIIÞpeak=ðKIIIÞstatic, of an edge crack for different values of l3=l1 and

h3=h1 (h2=h1 ¼ 0:5, b=h1 ¼ 1:0, q3=q1 ¼ 1:0)

l3=l1

0.2 0.5 1.0 2.0 5.0

h3=h1 ¼ 1:0 1.246 1.419 1.585 1.755 1.943

h3=h1 ¼ 1:5 1.270 1.455 1.623 1.788 1.963

h3=h1 ¼ 1 1.364 1.552 1.704 1.846 1.994

Table 3

Ratios between the peak and elastostatic stress intensity factors, ðKIIIÞpeak=ðKIIIÞstatic, of an edge crack for different values of h2=h1 and
l3=l1(q3=q1 ¼ 1:0, b=h1 ¼ 1:0, h3=h1 ¼ 1)

h2=h1

0.1 0.2 0.3 0.5 1.0 2.0

l3=l1 ¼ 0:2 1.238 1.265 1.299 1.364 1.469 1.561

l3=l1 ¼ 5:0 2.048 2.039 2.025 1.994 1.930 1.860

Table 4

Ratios between the peak and corresponding elastostatic stress intensity factors, ðKIIIÞpeak=ðKIIIÞstatic, of an edge crack for different values

of b=h1 and l3=l1 (q3=q1 ¼ 1:0, h2=h1 ¼ 0:5, h3=h1 ¼ 1)

b=h1

0.5 0.8 0.9 1.0

l3=l1 ¼ 0:2 1.640 1.509 1.441 1.364

l3=l1 ¼ 5:0 1.756 1.877 1.941 1.994

Table 5

Ratios between the peak and elastostatic stress intensity factors, ðKIIIÞpeak=ðKIIIÞstatic, of an edge crack for different values of q3=q1 and

l3=l1 (h2=h1 ¼ 0:5, b=h1 ¼ 1:0, h3=h1 ¼ 1)

q3=q1

0.3 0.5 1.0 2.0

l3=l1 ¼ 0:2 1.398 1.382 1.364 1.350

l3=l1 ¼ 5:0 1.949 1.969 1.994 2.016
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6. Closure

The elastodynamic response of a surface crack in a coating/substrate system with a functionally graded

interfacial zone has been investigated under the condition of antiplane shear impact. The interfacial zone

was modeled by a nonhomogeneous interlayer that possesses the power-law variations of shear modulus

and mass density. The integral transform techniques were employed and a singular integral equation with a

generalized Cauchy kernel was derived in the Laplace transform domain. As the main results, the evolution

of the dynamic mode III stress intensity factors with time and the overshoot characteristics were presented
for various material and geometric combinations of the coating/substrate system with the interlayer.

Specifically, it was illustrated that the values of the dynamic stress intensity factors are markedly influenced

by the shear modulus ratio, the interlayer thickness, and the crack size as well, but are dependent to a lesser
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degree on the substrate thickness and the mass density ratio. Of particular interest was that the peak

magnitude of the dynamic stress intensity factors appears to be unaffected by the substrate thickness.

Furthermore, the inertia effect, as measured by the ratio between the peak value of the dynamic stress

intensity factors and the corresponding elastostatic solution, may become more pronounced for the
compliant coating or for the substrate of greater stiffness and thickness. On the other hand, such an inertia

effect was shown to either increase or decrease as the interlayer thickness, the crack size, and the mass

density ratio are increased, depending on the stiffness of the substrate relative to that of the coating.
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Appendix A

The function D0ðs; pÞ in Eq. (28) is written as
D0ðs; pÞ ¼
f22g1 � f21g2
f11f22 � f12f21

; ðA:1Þ
where fijðs; pÞ, i; j ¼ 1; 2, and giðs; pÞ, i ¼ 1; 2, are expressed as
f11ðs; pÞ ¼ d1Iv
s
jaj

� �
þ 2d2 Ivþ1

s
jaj

� �
þ vjaj

s
Iv

s
jaj

� �
; ðA:2Þ

f12ðs; pÞ ¼ d1Kv
s
jaj

� �
� 2d2 Kvþ1
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� �
� vjaj

s
Kv

s
jaj

� �
; ðA:3Þ

f21ðs; pÞ ¼ d3Iv
s
jaj ð1

�
þ ah2Þ

�
þ 2d4 Ivþ1

s
jaj ð1

�
þ ah2Þ

�
þ vjaj
sð1þ ah2Þ

Iv
s
jaj ð1

�
þ ah2Þ

�
; ðA:4Þ

f22ðs; pÞ ¼ d3Kv
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� 2d4 Kvþ1

s
jaj ð1

�
þ ah2Þ

�
� vjaj
sð1þ ah2Þ

Kv
s
jaj ð1

�
þ ah2Þ

�
; ðA:5Þ

g1ðs; pÞ ¼ 1

�
þ 1� b

2

� �
a
k1

�
Iv

s
jaj
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þ a
jaj

s
k1

Ivþ1

s
jaj
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þ vjaj

s
Iv

s
jaj
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; ðA:6Þ

g2ðs; pÞ ¼ 1
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þ 1� b
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a
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jaj
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� a
jaj

s
k1

Kvþ1

s
jaj

� �
� vjaj

s
Kv

s
jaj

� �
; ðA:7Þ
together with djðs; pÞ, j ¼ 1; . . . ; 4, given by
d1ðs; pÞ ¼ �2 sinh k1h1 þ
ð1� bÞa

k1
cosh k1h1; ðA:8Þ

d2ðs; pÞ ¼
a
jaj

s
k1

cosh k1h1; ðA:9Þ

d3ðs; pÞ ¼ 2ð1þ ah2Þð1�bÞ=2
sinh k3h3 þ

ð1� bÞa
k3

ð1þ ah2Þð1þbÞ=2
cosh k3h3; ðA:10Þ
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d4ðs; pÞ ¼
a
jaj

s
k3

ð1þ ah2Þð1�bÞ=2
cosh k3h3: ðA:11Þ
It is noted that when the substrate is treated as a semi-infinite constituent such that h3 ! 1, the reg-

ularity condition w3ðþ1; y; tÞ ¼ 0 is to be enforced, instead of the traction-free condition in the second of

Eq. (7). In this case, it can be shown that the expressions in Eqs. (A.1)–(A.9) remain unaltered, but those in

Eqs. (A.10) and (A.11) are replaced by the followings:
d3ðs; pÞ ¼ ð1þ ah2Þð1�bÞ=2 þ ð1� bÞa
2k3

ð1þ ah2Þð1þbÞ=2
; ðA:12Þ
d4ðs; pÞ ¼
a

2jaj
s
k3

ð1þ ah2Þð1�bÞ=2
: ðA:13Þ
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