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Abstract

In this paper, the elastodynamic crack problem for a coating/substrate system with a functionally graded interfacial
zone is investigated under the condition of antiplane shear impact. With the interfacial zone being modeled by a
nonhomogeneous interlayer having the power-law variations of shear modulus and mass density, the coating is assumed
to contain an embedded or an edge crack perpendicular to the boundaries. Laplace and Fourier integral transforms are
used to reduce the transient problem to solving a singular integral equation with a generalized Cauchy kernel in the
Laplace transform domain. The time dependence of the crack-tip response in the physical domain is recovered via the
numerical inversion of the Laplace transforms and the values of dynamic mode III stress intensity factors are provided
as a function of time. As a result, the effects of material and geometric parameters of the current coating/substrate
system on the dynamic load transfer and overshoot characteristics over the corresponding elastostatic solutions are
addressed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of functionally graded materials in a wide range of modern engineering practice has been rapidly
increasing over the past decade, taking advantage of their attractive traits of relatively smooth spatial
variations of physical properties (Suresh and Mortensen, 1998). The deliberate use of graded media, among
other applications, in the form of an interlayer as a distinctive transition phase between the incompatible
dissimilar constituents can aid in soothing out the property mismatch that is apparent across the materials
juncture. It is thus feasible to achieve the enhanced reliability and durability over the conventional,
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discretely layered or coated system (Miyamoto et al., 1999). At the same time, many challenging issues have
arisen in connection with the fatigue and fracture behavior of functionally graded materials, which have
prompted extensive research demands for finding the solutions to some related crack problems under
various loading conditions. A review of previous investigations, along with a number of salient features
encountered in the analysis of such crack problems entailing the graded, nonhomogeneous properties, can
be found in the article by Erdogan (1998).

When it comes to the situations where the external loading is dynamic in nature, a subject area of
substantial importance would be to study the impact response of the graded media containing crack-like
flaws. In this regard, Babaei and Lukasiewicz (1998) evaluated the dynamic stress intensity factors for an
antiplane shear crack in a graded material between the dissimilar half-planes, and Li et al. (2001) and Li
and Weng (2002) examined the torsional impact behavior of a cylindrical crack and a penny-shaped crack,
respectively, in the graded interlayer. More recently, the impact failure of a mode I1I crack located parallel
to the boundaries of a graded orthotropic strip was predicted by Feng et al. (2003) based on the energy
density criterion, whereas the dynamic response of a mode I crack perpendicular to the free surfaces of a
nonhomogeneous orthotropic strip was considered by Chen et al. (2002). Another example of transient
fracture analysis is that of a mode III crack in an unbounded functionally graded material using the
boundary integral equation method performed by Zhang et al. (2003), where the variations of elastic
properties were described by both the unidirectional and bidirectional exponential laws. Instead of taking
the material parameters of the graded constituents to be certain continuous functions, i.e., exponential or
power functions of space as in the aforementioned, Wang et al. (2000) proposed a multilayered composite
model to provide the elastodynamic solutions for some cracked specimens possessing the graded, nonho-
mogeneous properties. To be specific, the graded region was simulated as the sum of several sublayers with
slightly different homogeneous properties in each sublayer. This approach was employed independently by
Itou (2001) for the dynamic analysis of a mixed mode crack in a nonhomogeneous interfacial layer between
two dissimilar half-planes. Similarly, but in contrast to having piecewise constant elastic properties, Wang
and Gross (2000) assigned the shear modulus that varies linearly in each sublayer and is continuous on the
subinterfaces, with application to a dynamic mode III crack in a graded interfacial layer of bonded
materials.

The objective of this paper is to investigate the impact response of an embedded or an edge crack in a
coating/substrate system with a graded interfacial zone subjected to the antiplane shear loading condition.
The interfacial zone in-between is modeled by a nonhomogeneous interlayer with the spatially varying
shear modulus and mass density in terms of power functions. The method of analysis is based on the use of
Laplace and Fourier integral transforms, coupled with the solution of a resulting singular integral equation
with a generalized Cauchy kernel in the Laplace transform domain. The particular emphasis is placed on
determining the mode III stress intensity factors, which are first defined and estimated in the Laplace
transform domain. Subsequently, the crack-tip response in the physical domain is recovered by the
numerical Laplace inversion, leading to the evaluation of dynamic mode III stress intensity factors as a
function of time for various combinations of material and geometric parameters of the problem under
consideration. Further attention is also paid to the dynamic overshoot characteristics over the corre-
sponding elastostatic solutions.

2. Problem description and basic equations

Consider a coating/substrate system with a graded interfacial zone as shown in Fig. 1, where the coating
on the left-hand side contains a crack of length 2¢ = b — a perpendicular to the boundaries. By modeling
the interfacial zone in-between as a nonhomogeneous interlayer, the quantities associated with the cracked
coating, the interlayer, and the substrate are defined in the local coordinates (x,y) = (x;,), j = 1,2, 3, with
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Fig. 1. Configuration of a cracked coating/substrate system with a functionally graded interfacial zone.

the thicknesses being #;, j = 1,2, 3, respectively. It is assumed that the coated system, which is initially at
rest and stress-free, is suddenly exposed to an antiplane shear traction applied on the crack surface. With
shear moduli and mass densities of the homogeneous constituents given by w; and p;, j = 1,3, respectively,
those of the nonhomogeneous interlayer are expressed as (Chiu and Erdogan, 1999)

o(x) = (1 + o), py(x) = py (1 +ox) 2, (1)

where the constant « and the exponent f are determined in the local coordinates (x,y) = (x,,y) so as to
render the continuous transition of such properties at the locations of nominal interfaces such that

Vis/ 1 =/ P/ P = 21In(ps/ 1) 2)
har/ p3/ 0 , In(us /) —1In(ps/p1)

With w;(x,,t), j = 1,2,3, denoting the z-component of the displacement vector under antiplane shear
deformation, the corresponding stress components are given by

ow

Xz — ‘_j7 vz — _7 .:17273 3
Y =l e =g J 3)
and the equations of motion for the constituents of the 3-layer coating/substrate system are written as
p; O*w;
Viw, =~ =L =13 4
J 'uj atz ) J )~y ( )
0 o?
Vi, Qe Ow (5)

I+ox o (1 +ax) 02

where ¢ is the time and V? is the two-dimensional Laplacian operator in the variables x and y.
Because the geometric and material symmetry prevails with respect to x-axis, only the upper half of the
region, y > 0, is considered. Together with the initial conditions as follows:
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a .
w;(x;,,0) = 0, %(xj,y,O):O, 0<x;<h, j=123 (6)

the conditions of traction-free boundaries and perfect bonding along the nominal interfaces in the coated
system are imposed in the local coordinates as

Tlxz<07ya t) = 07 T3xz<h3ay7 t) = 07 (7)

Wl(hlayvt) :WZ(Ovyat)7 WZ(h27y7t) :W3(07y7t)7 (8)

Tle(hlayv t) = ‘CZXZ(O?y7 t): TZxZ(h%ya t) = T3x2(07ya t) (9)
and the mixed conditions on the plane of the crack, y = 0, are prescribed as

Wj(Xj,O,l):O, 0<)Cj<hj7 j:2,3, (10)

W1(X1,0,I):0, 0<x <a, b<x; <h, (11)

T (x1,0,8) = f(x1))H(2), a<x <b, (12)

where f'(x;) is the arbitrary crack surface traction and H(¢) refers to the Heaviside unit step function.
A pair of Laplace transform and its inverse over the time variable 7 is defined as (Churchill, 1981)

* > -, 1 *
W](‘xj7y>p) :A Wj(xj’y7t)e ptdtﬂ WJ(X/'7y7t) :2_m/B Wj(xhy?p)eptdp? (13)
where p is the Laplace transform variable, Br stands for the Bromwich path of integration, and i = (— 1)1/ %,
Upon applying the Laplace transform, the time dependence is eliminated from the equations of motion
so that the general solutions for the displacement components, w; (x,»,p), 7 =1,2,3, can be obtained in
terms of the Fourier integrals in the local coordinates (x,y) = (x;,»), j = 1,2,3, as

2 [ . 1 [~
wi(x,y,p) = . /O (Aleilx +A2e‘i‘x) sinsyds + I / e s, 0<x < Ny, (14)
2 o )
wiley.p) =~ (1+ ocx)“*/”ﬂ/ HBllv [%'(1 + ocx)} + B:K, ﬁ(l + ocx)Hsmsyds, 0<x<h,
0
(15)
2 (™ o
wi(x, . p) = p /o (Clehx + G ) sinsyds, 0 <x < hs, (16)

where s is the Fourier transform variable, 4;(s,p), j = 1,2,3, B;(s,p), C;(s,p), j = 1,2, are arbitrary un-
known functions to be determined, and 7,( ) and K,( ) are the modified Bessel functions of the first and
second kind, respectively, with 4;(s,p), j = 1,3, and v(p) written as

n p; . 1-B\*  pi /P2
R O BT A %) =1.3: = - Ly 17
/“] s +'up7 J > % \/( 2 > +M1<a) ( )

and the expressions for the corresponding stress components are obtainable in the Laplace transform
domain from the constitutive relations in Eq. (3).
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3. Derivation of the integral equation

In order to derive the integral equation for the crack problem, a new unknown function is introduced in
the Laplace transform domain to replace the mixed conditions in Eqgs. (11) and (12), i.e.,

0 *
¢*(x17p): a_xlwl(xlvovp)a a<x1 <b7 (18)
0, O<xi<a, b<xi<h

and the boundary and interface conditions in Egs. (7)—(9) and (12) to be met in the Laplace transform
domain are rewritten as

11:(0,3,0) =0, 73.(hs3,y,p) =0, (19)
WT(h17y7p) = W;(Ovyap>7 W;(hbyap) = W;(O’yap)v (20)
T (h,3,p) = 15.(0,3.p), T (h2,y.p) = 75.(0,5,p), (21)
7),.(x1,0,p) Zf(;), a<x; <b. (22)

It is then observed from Egs. (14) and (18) that the expression for the unknown A;(s, p) is obtained as

< b
assp) = [ e ar (23)

and those for the six other unknowns, 4;(s,p), B;(s,p), and C;(s,p), j = 1,2, can be also determined in
terms of ¢" by the applications of Egs. (19)—(21). Hence, the auxiliary function ¢* becomes the only un-
known to be evaluated in such a way that the crack surface condition in Eq. (22) is satisfied.

Subsequently, from Egs. (3) and (14) and using the required expressions for 4;(s, p), j = 1,2, 3, followed
by some algebraic manipulations, the traction component, 7} _, along the crack plane can be written in the
form as

b

T .., .

m thOTi}z(Ly,p) Z/ [Ki(x,7,p) + Ka(x,7,p)|¢"(r,p)dr, x>0, (24)
17 a

where K;(x,r,p), j = 1,2, are the kernels such that

m&mm=—%/ R(s,p)e"" ™ ds, (25)
Ka(x, 7, p) = / O(x, r,5,p) ds, (26)
0

with the integrands R(s,p) and Q(x,r,s, p) being given by

1
R(Sap) = ; 52 + %pza (27)

2
Ox,r,s,p) = j—z [e=1104) 4 de~MM A (s, p) cosh Jyx sinh 7] (28)
g

in which the expression for the function 4,(s, p) can be found in Appendix A.
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Upon identifying the asymptotic properties of the integrands for large values of the variable s

tim R(s,p) = Ro(5) =, 9
lim Q(x,r,8,p) = Ouo(x,7,5) = g s+, (30)

It is therefrom obvious that the singularities the kernels may have must be the consequence of the foregoing
limiting behavior as s tends to infinity.

As a result, after separating the singular parts from the kernels and applying the crack surface condition
in Eq. (22), an integral equation is derived that is valid for both the embedded (¢ > 0) and the edge crack
(a = 0) such that

T * % f(x)
/a |:F—X+F+X+G(x’r’p):|¢(r’p)dr_,U,_IT’ a<x<ba (31)
where the kernel G(x,r, p) is written as
Glrrp) = [ [R(s.p) = Re(o))sins(r =) ds [ 100 rsip) — Ol )] ds. (32)
0 0

It should be mentioned that when the crack is embedded as a > 0, the term 1/(r — x) in Eq. (31) is known
as a Cauchy singular kernel that leads to the standard square-root singularity for the unknown function ¢~
and the other two terms inside the bracket of Eq. (31) remain bounded in the closed interval [a, b], without
affecting the singular behavior of crack-tip stresses. For the case of an edge crack problem as a = 0, besides
the Cauchy kernel that is singular at x = r, the term 1/(» +x) becomes also unbounded when x and r
approach the zero end point simultaneously, while the function G(x, r, p) is a regular kernel. In this case, the
first two terms in the kernels of the integral equation constitute a generalized Cauchy singular kernel.

4. Solution of the integral equation

The dominant singular kernel in the integral equation is the Cauchy-type for both cases of the embedded
and the edge crack. This also holds true even for the crack that terminates at the nominal interface with the
graded interlayer, i.e., b = hy, where the continuity of shear moduli exists (Erdogan, 1998). The auxiliary
function ¢* for these two crack configurations can therefore be expressed as (Muskhelishvili, 1953)

__ 8 a<r<b

oy d NV r=a)b—=r) ’

¢ (r,p) ) gy (33)
Vb —r’ ’

where g(r,p) is an unknown function bounded and nonzero at the end points.
After normalizing the interval from (a,b) to (—1,1) such that

r\ _b—afn b+a

the solution to the integral equation can be expanded into the following series:




H.J. Choi | International Journal of Solids and Structures 41 (2004) 5631-5645 5637

W) <1, a>0

* 1_ n=
o (np) = PVIZT 0 (35)
Zcmn; <1, a=0

where 7, is the Chebyshev polynomlal of the first kind and ¢,, n = 0, are coefficients to be determined. It is
to be pointed out that for the embedded crack, the function ¢ must fulfill the single-valuedness as

/—1 ¢"(n,p)dn =0 (36)

and from the first of Eq. (35) and Eq. (36) and the orthogonality of 7,,, it can be seen that ¢y = 0. In the edge
crack problem, however, the solution to the integral equation no longer contains an arbitrary constant so
that the compatibility condition as above is not needed in ensuring a unique solution.

Upon substituting Egs. (34) and (35) into Eq. (31), truncating the series with a finite number of terms,
and using the properties of the Chebyshev polynomials (Gradshteyn and Ryzhik, 1980)

S 1) B )

/ 1_’72(71_@ di/]_ U"*l(i)ﬂ |£‘<17 21, (37)
Z.(9) L) |1+ /T=9/2

/\/1— nin—=¢& /\/T _é)dn+mln I—vT=¢/2 | €l <1, n=0,

(38)
where U, is the Chebyshev polynomial of the second kind, the integral equation can be regularized. The
ensuing functional equation can be recast into a system of linear algebraic equations for the unknown
coefficients ¢,. To this end, the roots of the Chebyshev polynomial of the first kind are employed as a set of
collocation points (Erdogan, 1998), together with the involved bounded integrals evaluated by using the
appropriate Gaussian quadrature rules (Davis and Rabinowitz, 1984).

Once the coeflicients ¢, are determined, the integral equation in Eq. (31) provides the values of singular
traction ahead of the crack tip. It may be worth reminding that when the elastic properties are continuous
and piecewise differentiable near and at the crack tip, the corresponding stress field retains the square-root
singularity and the structure which are the same as those in the homogeneous material (Eischen, 1987; Jin
and Noda, 1994). As a result, the elevation of local crack-tip stresses can be extracted by first defining and
evaluating the stress intensity factors in the Laplace transform domain as

Kin(p) = lim /(@ 3, (x,0,p) = v_ Z Ve a>0, (39)

W fb—ag
—; 3 ch, a>0,

Ky (p) = 15})1 2(x = b)1y,.(x,0,p) = i v (40)
’ - \/E Cn, a= 07
which is then followed by the numerical Laplace inversion to recover the time dependence of the stress
intensifications, based on the algorithm developed by Stehfest (1970) such that

Kina() = 22 Z ki (2 t n2), >0, (41)
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In2 & m
K (1) = - Z VmKl*“b<7 In 2), t>0, (42)

m=1

where Ky, (¢) and Ky, (¢) are the dynamic mode 111 stress intensity factors at a specific time ¢ for the crack
tips a and b, respectively, M is a positive even number, and ¥, is given by

min(m,M/2) kM/Z(zk)|
(M2 — (k= 1)(m — B2k —m)!”

Vm _ (_1)111+M/2 (43)

ke=(1+m) /2
At large times, the values of such transient stress intensity factors would converge to those of the
elastostatic solutions

Jim (K (£), Kinno (£)) 2 [(Kiia) stasier (Ko ) gari (44)

and these static limits can be obtained from the final-value theorem as (Churchill, 1981)
[(KIHa)slatiC7 (KIHb)static] = pli%lp[KI*Ha (p)7 KI*IIb (p)] . (45)

To be mentioned is that due to the continuity of shear moduli and mass densities through the graded
interlayer, the defined stress intensity factors are equally applicable even when the crack-tip intersects the
nominal interface with the interlayer such that b = ;.

5. Results and discussion

The integral equation in Eq. (31) is solved under the condition of uniform antiplane shear impact applied
on the crack surface as f(x;) = —1¢ in Eq. (12), with 30-term expansion of the auxiliary function in Eq. (35)
and 10-term expansion for the inversion of the Laplace transforms in Egs. (41) and (42). This numerical
scheme leads to the solutions with a sufficient degree of accuracy for the material and geometric config-
urations considered in the present study. The resulting values of the normalized dynamic stress intensity
factors, Kiy(¢)/70l'/?, are plotted in Figs. 2-6 as a function of dimensionless time ¢, = ¢,¢// for various
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Fig. 2. Normalized dynamic stress intensity factors Ky (¢)/K, versus dimensionless time ¢,¢// for a homogeneous strip with a center or
an edge crack (K = toc'/? and [ = ¢ for the center crack; Ky = 19b'/?> and [ = 2¢ = b for the edge crack).
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Fig. 3. Normalized dynamic stress intensity factors Ky (¢)/K, of an edge crack as a function of dimensionless time ¢,/ for different
values of u;/u; and hs/hy (Ko = tob"/?, hy/hy = 0.5, b/h; = 1.0, p3/p, = 1.0).

combinations of material (us/u,, p3/p,). and geometric parameters (hy/hy,h3/hy,2¢c/hy) of the problem,
where [ = ¢ for the internal crack, / = 2¢ = b for the edge crack, and ¢, = (i, /p,)"* is the shear wave
velocity in the coating.

In order to discuss the results, it may be now appropriate to recall some general qualitative arguments
from the elastodynamic crack problem. Namely, the impact-induced dynamic stress intensity factors rise
rapidly with time, reach the peaks, and then decrease in magnitude, eventually settling down to the static
limits for sufficiently large times. Such a generic feature can be attributed to the interactions between the
waves scattered from the crack and those reflected from the boundaries and/or interfaces in the composite
media (Sih and Chen, 1981). Further addressed in this section are the dynamic overshoot characteristics of
the transient crack-tip behavior as quantified in Tables 1-5 by extracting the ratios between the peaks and
the corresponding elastostatic solutions, (Kur) pea/ (Kit)ggaic-

The dynamic stress intensity factors for a homogeneous strip containing a center or an edge crack are
first illustrated in Fig. 2 for different values of 2¢/h, where h = h; + h, + h; is the strip width, together with
solid circles being added to represent the exact elastostatic solutions Kyy(c0)/Ky = [(h/nc) tan(nc/h)]"/>
(Murakami, 1987). In this case, u;/p; = 1.0 and p;/p, = 1.001 are used to avoid the division by zero in Eq.
(2) and it should be remarked that the current results for the center crack are in good agreement with those
given by Chen (1977). It is apparent by comparison that the edge-cracked strip is subjected to the greater
peaks of the normalized dynamic stress intensities than the center-cracked one. Of interest is that when
2¢/h < 0.5 for the embedded crack and 2¢/h < 0.7 for the edge crack, the peaks remain nearly the same for
each crack problem. Table 1 provides the ratio of (Kin) e,/ (Kint)gqe that is seen to become enlarged when
2¢/h decreases, implying the effect of inertia more dominant over the effect of finite geometry for the smaller
crack size. When 2¢/h is increased, however, the peak values approach the static limits. Also obvious from
this table is the more pronounced dynamic overshoot for the edge crack. Based on the above and the
general notion that the problem of edge cracking is of greater practical importance than that of the
embedded crack, the results in the sequel are those for a =0, i.e., 2¢ = b.

The evolution of the dynamic stress intensity factors with time is given in Fig. 3 for several combinations
of shear modulus ratio u;/p,; and relative substrate thickness 43 /h;, with other properties being fixed as
hy/hy = 0.5, b/hy = 1.0 and p;/p, = 1.0. As expected, the peaks are greater for smaller p;/y,, but sup-
pressed below that of the homogeneous strip when u;/p; > 1.0, owing to the constraint from the adjacent
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Fig. 4. Normalized dynamic stress intensity factors Ky (¢)/K, of an edge crack as a function of dimensionless time ¢,/b for different
values of hy/hy (Ko = tob'/2, (a) /1y = 0.2, (b) p3/py = 5.0, p3/py = 1.0, b/hy = 1.0, h3/hy = 00).

stiffer substrate. Another point to be noted is that the peak magnitude in the dynamic stress intensification
and the elapsed time interval before it occurs appear to be hardly affected by the substrate thickness 45 /A,
although the static solutions may be lowered as /3 /4 is increased. Table 2 shows that the effect of inertia as
measured by the ratio (Kur) e,/ (Kim) i 1S more notable for the substrate of greater stiffness and thickness,
and that the shear modulus ratio is more influential than the substrate thickness.

Figures 4a and b contain the plots of time variations of the dynamic stress intensity factors for different
values of interlayer thickness %,/h;, where it is prescribed that p;/p, = 1.0, b/h; = 1.0, and the substrate is
semi-infinite as /;/h; = co. Specifically, as shown in Fig. 4a, when p,/u, = 0.2, the peak stress intensifi-
cation tends to be lowered as 4, /A, is increased. Such a trend with respect to /4, /h; is indicative of the fact
that the graded interlayer of greater thickness is more effective in alleviating the severity of edge cracking in
the stiffer coating layer. In Fig. 4b, the opposite response is observed for p;/p; = 5.0, where the amplitude
of the curve drops as the interlayer is rendered thinner. It is noted that the solutions for the given material
combinations are close to that for a homogeneous half-plane when %, /k; > 2.0 so that the influence of the
interlayer becomes insignificant. The dynamic overshoot of the stress intensity factors in Table 3 depicts
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Fig. 5. Normalized dynamic stress intensity factors Ky(¢)/K, of an edge crack as a function of dimensionless time c¢,#/b for different
values of b/hy (Ky = 10b"/?, (a) u3/p; = 0.2, (b) p3/p; = 5.0, p3/p; = 1.0, hy/hy = 0.5, hs /by = 00).

that for the coating stiffer than the substrate as u;/p; = 0.2, the more remarkable effect of inertia exists for
the greater %, /h;, whereas the opposite is true when p,/u; = 5.0.

With p;/p, = 1.0, hy/hy = 0.5, and h;3/h; = co, Figure 5a demonstrates that for the stiff coating as
U/ = 0.2 the peak value of the stress intensity factors becomes greater when the crack size b/, is in-
creased, while Figure 5b shows the reverse tendency for the case of compliant coating as p;/u; = 5.0.
Besides, it can be conjectured that for b/h; < 0.5, the dynamic stress intensity factors are closely matched
with those of an edge-cracked homogeneous medium. In Table 4, the dynamic overshoot characteristics are
also described in terms of (K)o / (Kiit)giaie» from which it is inferable that the inertia effect is more
appreciable for the smaller crack size when p;/p; = 0.2 and the opposite prevails when py/u; = 5.0.

How the mass density ratio p;/p, affects the dynamic crack-tip response is next examined for two dif-
ferent values of shear modulus ratio u;/u;, where it is assumed that h,/hy = 0.5, b/h; = 1.0, and
h3/h; = oo. Figure 6a predicts that when p,/u; = 0.2, the severity of near-tip region tends to be somewhat
attenuated as p;/p, is increased. When pu;/u; = 5.0, the reverse behavior is plotted in Fig. 6b such that the
constraint by the nearby stiffer substrate can be offset by increasing p;/p,. Moreover, the effect of p;/p; on
the dynamic stress intensity factors is observed to be more discernible when the coating layer is stiffer than
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Fig. 6. Normalized dynamic stress intensity factors K (¢)/K, of an edge crack as a function of dimensionless time ¢,7/b for different
values of p;/p; (Ko = t10b'?, (@) pt3/p, = 0.2, (b) u3/py; = 5.0, hy/hy = 0.5, b/hy = 1.0, h3/h; = o).

Table 1

Ratios between the peak and elastostatic stress intensity factors, (Ki) e/ (Kitt)garic> fOr @ homogeneous strip containing a center or an
edge crack

2¢/h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Center crack 1.216 1.201 1.176 1.135 1.080 1.032 1.000 1.000
Edge crack 1.697 1.676 1.639 1.585 1.513 1.413 1.277 1.121

the substrate as in Fig. 6a. The overall effect of p;/p,, however, appears to be less appreciable when
compared with that of p;/u, in Fig. 3. Because the static solutions are independent of the mass density,
Table 5 delineates that for p;/u; = 0.2, the inertia effect becomes more noticeable when p;/p, is lowered.
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Table 2

Ratios between the peak and elastostatic stress intensity factors, (Kur) e/ (Kit)ggie- Of @n edge crack for different values of y;/p1; and
hy/hy (ha/hy = 0.5, b/hy = 1.0, p3/p; = 1.0)

s/

0.2 0.5 1.0 2.0 5.0
hsy/hy = 1.0 1.246 1.419 1.585 1.755 1.943
hy/hy = 1.5 1.270 1.455 1.623 1.788 1.963
h3/hy = o0 1.364 1.552 1.704 1.846 1.994

Table 3

Ratios between the peak and elastostatic stress intensity factors, (Kur) e,/ (Kt )giae» ©f @n edge crack for different values of 4, /A and
s/ (ps/py = 1.0, b/hy = 1.0, h3/hy = 00)

hy [y

0.1 0.2 0.3 0.5 1.0 2.0
W/ =0.2 1.238 1.265 1.299 1.364 1.469 1.561
W/ =5.0 2.048 2.039 2.025 1.994 1.930 1.860

Table 4

Ratios between the peak and corresponding elastostatic stress intensity factors, (Ki) peak /(Kun)
of b/hy and p3/p, (p3/py = 1.0, hy/hy = 0.5, hy/hy = 0)

static?

of an edge crack for different values

b/h

0.5 0.9 1.0
s/ =02 1.640 1.509 1.441 1.364
1/ = 5.0 1.756 1.877 1.941 1.994

Table 5

Ratios between the peak and elastostatic stress intensity factors, (Km)pwk /(K gagic» Of an edge crack for different values of p;/p, and

w3/ (ha/hy = 0.5, b/hy = 1.0, h3/hy = o0)
p3/p
0.3 0.5 1.0 2.0
W/ =0.2 1.398 1.382 1.364 1.350
w /1 =5.0 1.949 1.969 1.994 2.016

6. Closure

The elastodynamic response of a surface crack in a coating/substrate system with a functionally graded
interfacial zone has been investigated under the condition of antiplane shear impact. The interfacial zone
was modeled by a nonhomogeneous interlayer that possesses the power-law variations of shear modulus
and mass density. The integral transform techniques were employed and a singular integral equation with a
generalized Cauchy kernel was derived in the Laplace transform domain. As the main results, the evolution
of the dynamic mode III stress intensity factors with time and the overshoot characteristics were presented
for various material and geometric combinations of the coating/substrate system with the interlayer.
Specifically, it was illustrated that the values of the dynamic stress intensity factors are markedly influenced
by the shear modulus ratio, the interlayer thickness, and the crack size as well, but are dependent to a lesser



5644 H.J. Choi | International Journal of Solids and Structures 41 (2004) 5631-5645

degree on the substrate thickness and the mass density ratio. Of particular interest was that the peak
magnitude of the dynamic stress intensity factors appears to be unaffected by the substrate thickness.
Furthermore, the inertia effect, as measured by the ratio between the peak value of the dynamic stress
intensity factors and the corresponding elastostatic solution, may become more pronounced for the
compliant coating or for the substrate of greater stiffness and thickness. On the other hand, such an inertia
effect was shown to either increase or decrease as the interlayer thickness, the crack size, and the mass
density ratio are increased, depending on the stiffness of the substrate relative to that of the coating.
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Appendix A

The function A4y(s,p) in Eq. (28) is written as

Ao(s p) _ J081 — [2182
’ Sfufon = fufa’
where f;(s,p), i,j = 1,2, and g;(s,p), i = 1,2, are expressed as

s = ot (57 ) 20 () < ()]

st =0k, ) =2k (1) =05 ()

b o) |+ e g |
ol o] - )
aten) = [0 (550 2 o) il (i) 5 Gl
o= [+ (557) 2 () il () -5 ()

together with ¢,(s,p), j =1,...,4, given by

Fa(s,p) = 851, L i —&-ochz)} + 26,

fon(s,p) = 8:K, [ (1+ :xhz)} — 26,

o

>>| Q

>)| Q

1 —
81(5,p) = —2 sinh Ak + I'B)“ cosh A1,
o s .
Ox(s,p) = m /1—1 cosh Ay Ay,

03(s,p) = 2(1 + ahy) " "P? sinh A3hs + a ; Lk (1 + ahy) P72 cosh A,
3

(A.2)

(A.3)
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o s

i (1 + ahy)"P/* cosh Ashs. (A.11)
3

54(S7p) =

It is noted that when the substrate is treated as a semi-infinite constituent such that #; — oo, the reg-

ularity condition ws(400,y,¢) = 0 is to be enforced, instead of the traction-free condition in the second of

Eq. (7). In this case, it can be shown that the expressions in Egs. (A.1)-(A.9) remain unaltered, but those in
Egs. (A.10) and (A.11) are replaced by the followings:

_ 1—
53(s,p) = (1 + ahy) P2 +%(1 + ahy) P2 (A.12)
3
o S _
d4(s,p) :WZ(I + ahy) P2, (A.13)
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